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BNTRODUCTION 

This  Inter im Progres s  Report p resents  a discussion of the work 
performed on Contract NAS 9-879 during the period f rom 7 January 1963 
to 1 Februa ry  1963. It concentrates on the continuance of the discussion 
of L a s e r  and Optical Detector Technologies presented in the first repor t  
and with it, represents  a rather  comprehensive survey of existing Laser 
and Optical Detectors.  
devices relevant to  optical communication is also included. 
bibliography is presented in the appendix. 

Discussion of important charac te r i s t ics  of the 
An extensive 

Kenneth L. Brinkrnan 
Pr oj e ct Manager 
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COMMUNICATIONS STUDY 



1.0 OPTICAL MASER TECHNOLOGY 

In the first p rogres s  report ,  a prel iminary survey of operating 
l a s e r s  and their  charac te r i s t ics  w a s  given. 
principal concentration was on pulsed solid s ta te  and CW Gas Lasers.. 
The following is a continuation of that  survey concentrating on CW operating 
l a s e r s  (solid s ta te  and gas),  the propert ies  of the Gallium Arsenide l a s e r s ,  
and so lar  pumped lasers .  The character is t ics  of operating l a s e r s  which 
a r e  re levant  to  their  u se  as optical communications sys tems components 
is a l so  discussed. An extensive bibliography is included in the Appendix. 

In that document, the 

1 .1  LASER CHARACTERISTICS 

1. 1. 1 Coherence and Spectral  Proper t ies  of L a s e r s  

One of the reasons  optical l a se r  beams are thought t o  be suitable 
for  applications to communications is the la rge  degree of temporal  and 
spatial  coherence exhibited by the l a se r  emission. Since the discovery of 
l a s e r s ,  the propert ies  of the laser  emission has  been studied extensively. 
In the discussion that follows we sha l l  review some of the present  knowledge 
of the coherence and spec t ra l  propert ies ,  and the detailed s t ruc tu re  of the 
laser emission that may be of special in te res t  in applications to optical 
communications. 

Usually many modes oscillate simultaneously in an optical resonator.  
These modes have different frequencies and different spat ia l  charac te r i s t ics  
so that one may not be able to  m&e use  of m o r e  than one mode in a specific 
application. When al l  the modes except one a r e  suppressed,  the power 
that was former ly  distributed over many modes is concentrated in a single 
mode. 
by Kogelnik and Pa te l l ,  
modes without decreasing the gain of the cavity so that the output power is 
not decreased  and is concentrated in a single frequency nea r  the center  of 
the Doppler -broadened line. 
consis ts  of a single longitudinal mode, the light is spatially coherent a c r o s s  
the beam c r o s s  section and the collimation of the beam is thus limited by 
diffraction. 
four milliwatts continuous power in  the 1. 153 micron  line has  been 
observed to  be almost  diffraction l imited2. 
t h ree  or  more  components l e s s  than a few hundred cycles in width and 
separated by the spacing of o rde r s  in the interferometer .  

This mode suppression h a s  been accomplished in a He-Ne gas  l a s e r  
They have suppressed the unwanted longitudinal 

Theoretically, when the osci l la tor  output 

The beam spread  of the emission of a He-Ne gas  laser with 

The line shape consis ts  of 

The spatial  coherence of a beam can be measured  by observing 
the far field o r  multiple sl i t  diffraction pat terns  while the time coherence is 



measured  by the spec t ra l  line width. 
between any two points in the beam is given by a combination of these two 
effects. 
always indicative of the t ime coherence since the output may consist  of 
unresolved off-axis and axial  modes. These off-axis modes have been 
observed by Ready3 and many others .  
been observed4 with a spec t ra l  width of 6 x 
have made observations on the output of a ruby l a se r  that  indicate that the 
Line width is  about 2 Mc/sec .  
faces of the ruby, i s  able to support many resonant  frequencies within the 
atomic Line breadth. Adjacent modes a r e  separated by about 602 Mc/sec .  
in the l a s e r  used in this experiment. Photo mixing of the output produced 
microwave signals spaced about 600 Mc/sec.  apa r t  which showed that the 
Laser is indeed oscillating in seve ra l  simultaneous axial  modes separated 
by the proper frequency interval.  

The mutual correlat ion function 

However, the line width of the emission of the ruby l a se r  is not 

One or  mo  e sha rp  components have 2. McMurtry and Siegman5 

The resonant cavity, formed by the end 

Interference pat terns  have been formed by the d i rec t  illumination 
of two s l i ts  with the light emission fromLthe end face of a ruby. 
formation of interference fringes demonstrates  the phase coherence 
between different points on the face of the ruby . 
made beams f rom the opposite ends of a ruby Laser interfere  and have 
obtained interference fringes7. 
between points a t  different ends of the ruby, which i s  the expected r e su l t  
for a sys t em of standing waves in a cavity. As i s  well known, the output 
of a ruby laser  consists of a s e r i e s  of spikes of about a microsecond 
duration. The distribution of Light a c r o s s  the face of the ruby, which is  
known to be non-uniform, need not be the same  f r o m  spike to spike. If 
the distribution of the light does change, the interference pat tern would 
change f rom spike to  spike and observations made over a large number of 
spikes would not show interference fringes.  
in the experiments of Kisliuk and WaLsh imply, in addition to constant 
phase relationship, that the distribution of light a c r o s s  the face of the ruby 
must  be nearly the same for a l l  spikes. 

The 

6 Kisliuk and Walsh have 

This implies a constant phase relationship 

Hence, the existence of fringes 

I r regular i t ies  of the fringe pat terns  a r e  a l so  observed, which is  

Both these observations a r e  accounted for by 
consistent with the resu l t s  of Nelson and Collins who found that the fr inge 
pat terns  were displaced. 
assum'ing a slight phase difference between spatially separated points on the 
ruby face. 

The spectral  purity of the emission of gas l a s e r s  is much grea te r  
than that of the ruby output. 
width of a He-Ne gas  Laser to  be not l a rge r  than 2 cps. 
l imit  of the narrowness of the spec t ra l  Lines is a consequence of a cer ta in  
unavoidable amount of spontaneous emission. 
even though extremely small, is s t i l l  s eve ra l  o rde r s  of magnitude grea te r  
than the theoretical  limit. It should be emphasized, however, that  the 
grea te r  degree of monochromaticity of the gas Laser does not mean that gas 
Lasers possess  a c lear  advantage over pulsed Lasers for the purposes  of 

Javan et. al. have found the intr insic  line 
The theoret ical  

The measured  Line width, 
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communication, since present  modulation techniques cannot make use  of 
the potential band width available at optical frequencies. 

The fi lamentary nature of the emission of ruby l a s e r s  has been 
frequently observed. 
have been made which show that the light i s  emitted in a pat tern of smal l  
spots on the ruby face,  and that the emission pat tern does not change much 
during the pumping pulse. This is in agreement with deductions made f rom 
the observation of interference fringes discussed above. In addition, s t reak  
photographs of sufficient resolution to  show the s t ruc ture  of a single l a se r  
spike were  made. They show that within each spike is  a regular  oscillation 
of about 50 Mc/ sec . ,  and that each emitting a r e a  of the ruby produces a 
spike with the same 50 Mc/sec.  oscillation on i t ,  with the oscillations 
sometimes out of phase. 

High speed photographs9 of the emission pat terns  

Optical m a s e r s  a r e  presently limited to e i ther  higher -power pulsed 
operation or  relatively low-power continuous operation, and the power 
efficiencies of these coherent optical frequency sources ,  with the exception 
of the Ga As l a s e r s ,  a r e  st i l l  very low ( less  than 1 percent). 
what is needed is  a ilioderately efficient, medium-power continuous source,  
o r  perhaps a high-power, efficient, pulsed source with a high-duty cycle. 
There is presently a considerable effort  towards developing sources  with 
these capabilities; Hughes Research Laboratory a t  Malibu, California and 
R. C. A. Laboratory a t  Princeton, New Je r sey ,  to mention two, a r e  
presently concerned with the development of 10 watt continuous solid-state 
l a s e r s  of improved efficiency. 
f lash tubes capable of repetitive high-power operation and the maintenance 
of low tempera tures  in the l a se r  crystal .  
the c rys ta l  i s  of the order  of the power output, and efficient operation of 
the l a se r  requi res  low temperatures ,  cooling the c rys t a l  i s  by no means 
a minor problem. 
here ,  but we wil l  d iscuss  s o m e  features of the single pulse operation of 
pulsed l a s e r s  and in par t icular  the giant pulse mode of operation. 

Evidently 

The achievement of high-duty cycles requi res  

Since the power dissipated in 

We will not consider the problems of repeti t ive pulsing 

In the usual pulsed operation of a ruby l a se r  and other solid-state 
l a s e r s ,  the output consists of a s e r i e s  of microsecond duration spikes spaced 
seve ra l  microseconds apart .  The individual spikes have a peak power of 
the o rde r  of a few kilowatts and the total energy in the s e r i e s  of spikes i s  
about a joule. 
i s  above the threshold for oscillation. 
Lamps in pulses about a millisecond long. 

The spikes o r  oscillations continue so long a s  the input power 
Usually the ruby i s  pumped by f lash 

In normal  l a se r  operation, oscillation occurs  when the gain of the 
cavity exceeds the losses  by a small  amount. 
an increased radiation density in the cavity and a subsequent depletion of 
the population of the excited metastable state. 
s ta te  i s  then decreased  more  rapidly than it i s  replenished by the pump 
photons. 
number required to provide net gain in the cavity, the oscillation subsides.  

The stimulated emission causes 

The population of the excited 

When the population of excited s ta tes  is  reduced below the c r i t i ca l  
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This is a rough description of the production of a single l a se r  spike. 
Continued pumping repopulates the metastable s ta te  and the p rocess  is 
repeated a s  long a s  the pumping energy is sufficiently high to obtain 
a net gain in the cavity. 
energy is  essentially constant. That is, there  a r e  variations in the amplitude 
and spacing of the l a se r  spikes within a single pulse. 
numerous explanations for the spiking phenomena, none of which s e e m  to 
completely explain the problem. 
was a damped oscillation and would decay when the ruby was operated 
continuously. This has  proved not to be the case ,  since in the CW operation 
of a ruby laser  the spikes have been observed to p e r s i s t  with essent ia l ly  
the s a m e  character is t ics  that  a r e  observed in pulsed operation. 
continued spiking i s  charac te r i s t ic  of the four solid-state l a s e r s  known to 
have produced CW output. 
ruby) 

The spiking i s  not periodic even when the pumping 

There  have been 

It was originally thought that  the spiking 

The 

(Ca F2: Dy", Ca W 0 4 :  Nd3+, Ca F2: U3+ and 

The output of a giant pulse ruby laser  consis ts  typically of a single 
high-power short-duration bu r s t  of coherent radiation. 
about 10-8 sec. o r  longer and peak powers of the order  of megawatts a r e  
easily obtained when proper  switching techniques a r e  used. 
single pulse occurs  only fo r  special  switching conditions on the power 
regeneration to  the cavity, and the output often consis ts  of a large pulse 
followed by severa l  low-power pulses. 
is  achieved by varying the power regeneration to the cavity, which is 
equivalent to varying the Q of the resonating cavity. 

These pulses  a r e  

Actually a 

The giant pulse mode of operation 

To obtain giant pulses,  one pumps a ruby laser  contained in an 
This can be a r ranged  by making the optical cavity of very  high loss.  

reflection losses of the cavity very large.  
population inversion in the ruby to obtain net gain and l a se r  oscillation in 
the cavity. When a large population inversion i s  obtained and before  
spontaneous oscillation takes  place, the reflection losses  a r e  decreased,  
which produces a situation where the normal  threshold conditions fo r  
oscillation a r e  greatly exceeded. 
tion i s  sufficiently fas t ,  a single short-duration high-power pulse i s  
produced. 
complicated l a se r  dynamics and line broadening effects that a r e  not fully 
understood. However, many of the g ross  features  of the pulse s t ruc ture  
a r e  understood. 
Q switching t ime and that for sufficiently slow switching seve ra l  low-power 
pulses follow the initial intense pulse. 
investigated the effect of the switching r a t e  on the pulse power a s  a function 
of t ime and they have a l so  studied the effect of the switching r a t e  on the 
spec t rum of the emitted radiation. 
the broadest spectrum. The spec t ra l  width of the R1 ruby line of the giant 
pulse i s  broader than the line width for normal  l a s e r  operation, and the 
beam width of the giant pulse is  essentially the s a m e  a s  for normal  l a s e r s s  
i. e. about a mill iradian. 

It then requi res  a large 

When the switching of the power regenera-  

The detailed s t ruc ture  of the pulse is governed by some fa i r ly  

It i s  known that the pulse shape is sensit ive to the cavity 

McClung and HellwarthlO have 

The pulses of shor tes t  duration have 
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In principle the energy output per  pulse per  unit volume of laser 
material should be about 1/2 h y (  n2-n 1) where hy is the energy-psr-phaton 
and n 
inversion of, say,  50 percent one expects about one joule output pe r  cubic 
cent imeter  of ruby. The observed output of the giant pulses a r e  far less 
than the expected results.  Apart f rom the discrepancies  between theoret ical  
and experimental  energy emission, there  are basic limitations in the energy 
pe r  pulse that can be obtained from a single ruby laser. 
it is in principle impossible to achieve a high initial inversion over 
a rb i t r a r i l y  large dimensions, which limits the s ize  of the ruby that may be 
used effectively. F o r  example, if one uses  a very  long ruby, a high 
inversion will be achieved in the central  portion and not in the ends. 
only the middle of the ruby will participate in the laser action. 
of the ends is caused by spontaneous emission f r o m  the ends undergoing a 
large gain as it pas ses  the length of the ruby. 
the inversion at the ends is depleted in a manner  independent of the reflection 
f r o m  the end faces of the ruby (or cavity). 

nl is the population inversion density. F o r  pink ruby and an initial 2- 

It turns  out that 

Hence, 
The depumping 

When the ruby i s  long enough 
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1. 1. 2 Threshold 

The threshold for l a se r  operation is defined by the minimum gain 
necessa ry  to overcome the loss mechanisms existing in a given cavity. 
The gain in turn,  is direct ly  re la ted to  the energy or  power which is 
extracted from the source. 
o r  watts,  according to  the mode of operation. 

Hence, the threshold is  measured  in joules 

Since devices vary widely in s ize  and configuration it is difficult 
to  make meaningful comparisons between reported threshold values. 
Doping, pump source,  coupling, reflectivity, c rys t a l  s ize ,  operating 
temperature  and other fac tors  all have a considerable effect on the threshold. 
Generally, it increases  with doping, c rys t a l  s ize ,  and operating tempera ture ,  
it decreases  with increased ref le ctivity. 

1. 1. 3 Efficiency 

There a r e  a number of different efficiencies which can be defined 
for l a s e r s ,  but generally the one cited is  the net conversion efficiency 
(source input power to laser  output). However, there  a r e  two fac tors  
which se t  a l imit  on the efficiency and energetic efficiency and a r e  cha rac t e r -  
is t ic  of the laser  medium. 

Quantum efficiency is the probability that an atom in one of the 
pump band states will make the transit ion to the te rmina l  s ta te  via the 
l a se r  transition. In general  there  is a finite possibility that the a tom will 
make the transit ion by re-radiat ing the pumping radiation for example. 
The other limiting mechanism is the energet ic  efficiency which is  defined 
a s  the rat io  of the l a se r  t ransi t ion photon energy ta the pumping t ransi t ion 
photon energy (for  optical pumping). 

Generally, the quantum efficiency i s  1 7 0  percent  while the energet ic  
efficiency may be a s  low a s  10 percent.  
theoret ical  l imit  on the net conversion efficiency of any device which may 
be constructed. 

The product of these two se t s  a 

1. 1. 4 Doping 

The doping o r  concentration (nurnber/crn3 o r  percent  by weight) 
determines the maximum energy which can be s tored  in a unit volume since 
each  atom can s tore  an amount of energy hy .  
can be increased by increasing the doping, but at the same t ime,  the 
energy required to obtain equal populations will a l so  increase ,  result ing 
in higher thresholds. 
i nc rease  since the power loss per  unit volume due to spontaneous decay i s  
direct ly  proportional to the number of atoms in the excited state. 
these reasons,  it has  been found advantageous to  use  dopings of l e s s  than 
one percent, 

The energy s torage capacity 

Also, the power required for CW operation will  

F o r  
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1. 1. 5 Operating Temperature  

If the te rmina l  level of the laser transit ion lies above the ground 
s ta te ,  as it does in a four-level laser ,  then the te rmina l  level may be 
depopulated by cooling the crystal. This a r i s e s  f r o m  the fact that  the 
population of the level T is proportional to the factor  e -ETWTs  where ET 
is the energy of the level above ground state and T, is the c rys t a l  t empera-  
ture.  
of excited atoms is now required for  'population inversion. A s imi la r  effect 
is observed for three- level  systems. 

The net effect  is a lowering of the threshold since a smal le r  number 

Semiconductor lasers a r e  very  sensit ive to  tempera ture  since the 

Both frequency and threshold exhibit 
band s t ruc ture ,  which is intimately connected with the l a s e r  action, changes 
rapidly when the c rys t a l  is heated. 
thermal  effects. 

1.2 SUMMARY O F  OPERATING LASERS 

1.2. 1 CW Lasers 

Lase r  action on a continuous o r  quasi-continuous basis  has  been 
demonstrated in various types of active media: solid s ta te  dielectr ics  
and semiconductors as well  as gases. Some of the media  available at . 
the present  time a r e  l isted in Table I, along with other  proper t ies  basic  
to the laser action itself without r ega rd  to par t icular  devices. It is seen 
that a wide variety of frequencies, conversion efficiencies, and pumping 
charac te r  i s t ic  s i s available. 

Charac te r i s t ics  of particular devices which have been successfully 
operated are given in Table 11. 

1. 2. 2 Semiconductor L a s e r s  

The recent  achievement of laser action in GaAs has given rise to  
a new field of investigation in the r e a l m  of l a se r  technology. 
stems f rom the fact  that  d i rec t  conversion of e lec t r ica l  energy to coherent 
radiation takes  place in a highly efficient manner. 
it solves the problem of how to modulate a l a se r  beam since the e lec t r ica l  
pumping cur ren t  can easi ly  c a r r y  the modulating signal as well. 

Its significance 

What is more  important, 

Current  passing through a GaAs diode in the forward direct ion 
gives r i s e  to  the emiss ion  of recombination radiation in the vicinity of the 
p-n junction. 
spec t r a l  line is reduced indicating the presence  of st imulated emission. 
controlling c rys ta l  impuri t ies  and creat ing an optical cavity in the plane of 
the junction, laser  action can occur. It is believed that at  high cu r ren t  
densi t ies  operation takes  place with near ly  unity quantum efficiency, i. e . ,  
fo r  every  electron crossing the junction one photon i s  emitted. The net 
conversion efficiency of the device (input e lec t r ica l  energy to radiated 
energy)  has  been observed to  be as g rea t  as 50 percent  compared to the 

As the cu r ren t  density is increased, the width of the emitted 
By 
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present  0. I percent for conventional 
devices mer it fur ther  investigation. 

a s e r s .  Clear ly ,  these highly efficient 

Although experimental  resu l t s  a r e  spa r se ,  some idea of the operating 
charac te r i s t ics  of present  semiconductor l a s e r s  can be obtained f r o m  the 
par t ia l  summary given in Table 111 oil the following page. 

The band s t ruc ture  of the semiconductor, which is intimately 
related to laser  action, i s  very sensit ive to temperature .  Hence, the 
cur ren t  d nsities required for high power l a se r  operation ( ~ 2 0 , 0 0 0  
amps/CM ) give r i s e  to  ser ious  cooling problems. 
enhanced by immers ing  the c rys t a l  in a low tempera ture  bath, e i ther  
liquid nitrogen (770K) o r  liquid helium (4. 2OK). 
a lso obtained by pulsing the input to the junction. 
yielded peak powers of 280 watts a s  compared to 25 mill iwatts for 
continuous operation. 

2 Operation is great ly  

High output powers a r e  
This procedure has  

The spec t ra l  charac te r i s t ics  of semiconductor l a s e r s  a r e  quite 
s imi la r  to those of other las r s .  

above threshold to approximately 2 A below threshold at liquid hel im 
temperatures .  
to its se r i e s  res i s tance  causes  a shift of the emission line during the pulse. 
This shift represents  an over-estimation of the half width of the line and 
the reported values represent  only upper limits, 
f rom the junction of the diode, better than 50 percent  i s  coherent at the 
operating frequency. 

F o r  GaAs the emiss ion  line is typically 
in the neighborhood of 8400 B with %half width which dec reases  f rom 125 A 

A t  high cur ren t  densit ies heating of the p-n junction due 

Of the light power output 

Observed beamwidths vary f rom 0. lo to  loo. 

It has been demonstrated that by changing the chemical composition 
of the semiconductor c rys ta l ,  e. g. doping element and/or  concentration, 
it is possible to change the wave length of a p-n junction l a se r .  
estimated that su& a procegure could yield frequencies anywhere in the 
range f rom 6000 A to 9000 A in the near future. Assuming that s emi -  
conductor laser  technology p rogres ses  a s  rapidly as that of conventional 
l a s e r s ,  Table IVpresents  likely developments for these devices within 
the next f e w  years .  

It is 

TABLE I V  
Beam and 

Operating Temp. Power Output Spectral  Charac te r i s  t ics  

4OK to 300°K 1 - 10 kw (peak, pulsed) to radians beamwidth 
0 

I 1 - 10 w (continuous) 6000-9000 A operating frequency 

L e s s  than I A line width 
0 
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1. 2 . 3  Solar Pumped L a s e r s  

When sufficiently broad pumping bands a r e  available i t  i s  possible to 
use the sun directly a s  a pum5ing source for a laser .  
demonstrated using CaFZ: Dy 
condensing m i r r o r  collecting about 50 watts of power was focused on the 
c rys t a l  and produced a CW laser  out ut at 2.3~. Relaxation oscillations 
were clear ly  present. For  CaFZ:DySt approximately 10 percent  of the 
so la r  power i s  useful in  pumping. Larger  m i r r o r s  and more  efficient 
methods of coupling the collected energy to the c rys t a l  (end pumping, for 
example) a r e  expected to produce l a rge r  outputs competitive with conventional 
CW lase r s .  

This has  been 
at liquid neon temperature .  A 10" diameter  

Another possibility, though not quite so d i rec t  a s  the previous, i s  to 
pump a semiconductor l a se r  directly f rom a solar  cell. 
(1. 0-2.0 volts) used for  cur ren t  GaAs l a s e r s  suggests such operation. 
conversion efficiency of the solar cell-semiconductor combination could 
approach 25 percent. 

The low voltages 
The 

Size limitations on collector surfaces  would determine the maximum 
power output to be expected of the above mentioned Aystems. Cooling 
problems a l so  seem to be a non-trivial  factor in CW operation of solid 
s ta te  l a s e r s  and would certainly be present  in the cade'of d i rec t  solar  
pumping. 

L -13- 



2.0 OPTICAL DETECTOR TECHNOLOGY 

During this phase of the IRSGHL portion of the study of optical 
communications f r o m  deep space,  much attention was devoted to possible 
problems in detection of highly degenerate (quantum-mechanically speaking) 
l a se r  radiation. 
except for  the general  conclusion that excess  fluctuation i s  probably always 
avoidable by proper  sys t em design, and indeed may  never be significant. 
It is  recommended that sys tem design proceed on the assumption that such 
excess  fluctuation does not exist. A survey of the potentialities of optical 
and infrared de tec tors  is  presented below; the ultraviolet  region below 0. 2 p 
i s  not considered because it s eems  to offer no advantage, and the difficulties 
of the technology, par t icular ly  that of present-day l a s e r s ,  suggests that  it 
is  not worth fur ther  consideration. 
phototubes f rom 0. 2 to 1. 1 p ; es t imates  a r e  given for infrared detectors  
to 36 p .  
in the Proceedings of the IRE for September 1959 may be consulted. 

Unfortunately this work is not in a condition to repor t ,  

Firm data  a r e  presented for multiplier 

For fur ther  information seve ra l  a r t i c l e s  on infrared detectors  

By far the bes t  means for detection of light is the photoemissive 
process .  An electron re leased  f r o m  a surface may be increased to a s i ze -  
able cur ren t  by a secondary-emission electron mult ipl ier ,  o r  it may  be 
accelerated to high velocity and detected by other means.  The most  useful 
device of this type i s  the multiplier phototube. 

1 
The charac te r i s t ics  of typical photoemissive surfaces  a r e  shown in 

Figure 1. 
efficiency in Figure 2. 
e lectrons emitted p e r  incident photon; for visible or  infrared light at most  
one electron can be re leased  for  any one incident photon. 
quaetum efficiency factor is equivalent to an attenuation factor applied to 
the light beam. 
amplitude of response of the multiplier to each photoelectron and the sma l l  
dark-cur ren t  noise component, both of which a r e  often negligible, the 
information efficiency of a beam of light is mere ly  degraded by this 
quantum efficiency factor in the detection process .  
are transmitted in vain. 

The envelope of these data  is replotted in t e r m s  of quantum 
The quantum efficiency is the average number of 

Hence this 

Except for a fluctuation of perhaps 0.30 in the relative 

Photons not detected 

The frequency response of multiplier phototubes is  uniform for  
frequencies up to approximately 108 cps,  and pulse r i s e  t ime i s  approxi- 
mately 3 x 10-9 sec ,  with a t ime j i t ter  of 10-9 sec .  
an adequate bandwidth capability fo r  t ransmiss ion  of a television picture 
in a variety of modes of t ransmiss ion  of codings. 

There  i s  therefore  

'Copied from "RCA Photo and Image Tubes", booklet 1CE-269 of the Radio 
Corporation of Amer ica ,  Electron Tube Division, Harr ison,  N. J. 

- 14- 
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Systems employing multiplier phototubes in low-background, large 
bandwidth operation are essentially signal-noise limited, i. e.,  the main 
noise is the fluctuation in signal photoelectrons due to  random processes  
in t ransmiss ion  and detection. 
in signal photoelectrons pe r  pulse period if the number of photons t r ans -  
mitted is accurately known. 
degenerate laser beam may produce la rge  fluctuations in the number of 
photons t ransmit ted,  and hence produce excess  fluctuations in the photo- 
e lectrons in the detector ,  but such laser  beams are  not anticipated and in 
any event may be avoided by use  of other l a se r s .  

Such p rocesses  c rea te  a Poisson distribution 

Modulation of a quantum-mechanically 

The theory of Jones' is therefore applicable, and the upper bounds 
to information efficiency (bits /photo; h e r e  bits /photoelectron) which he 
establ ishes  can be approached as closely as ski l l  in coding permits .  In 
o rde r  to rea l ize  efficiency improvements f rom use  of widely spaced pulses 
in a PCM system, the t ransmit ter  efficiency mus t  remain  unchanged as 
the duty cycle is reduced. 
pulsed-ref lector  (gaint pulse) mode approximately meets  this requirement.  
Pulse  energy may be controlled by a feedback control technique, such 
that as soon as enough light has been t ransmit ted the optic21 cavity regenera-  
tion is reduced. 
the type of beam to which Jones '  analysis applies. 

A continuously pumped l a se r  operating in the 

There  is thus at least  a theoret ical  capability of generating 

Other types of photoemissive detectors ,  such as image orthicons and 
image intensifiers,  microwave phototubes, and var ious optical-mixing 
superheterodyne techniques provide capability for unique types of signal 
processing, involving imaging, extremely wide band amplification, o r  very  
narrow optical bandwidth. 
for  any of these capabilities. 
tubes worthy of discussion here  is  their  spec t ra l  response:  
quantum efficiency at 1. 1 u is only 0. 0 1  of that  at 0. 55 u,  and this s teep  
decline continues fur ther  into the infrared. 

However, no need ex is t s  in the present  sys tem 

The maximum 
The only deficiency of multiplier photo- 

The mil i tary utility of infrared sys tems has  engendered development 
of a host of new infrared detectors since 1940. The bet ter  of these have 
t ime constants l e s s  than sec. and provide substantial  power ampli-  
fication p r io r  to the input of their preamplif iers .  

The quantum efficiency of these detectors  is quite high, but noise 
other  than signal noise is dominant. 
and the InSb and doped germanium crys ta l  detectors  will,  when appropri-  
ately cooled, be limited by fluctuations produced f r o m  detection of the 
radiation flux incident upon them r o m  room-tempera ture  surroundings. If 
this radiation is reduced, tenfold improvement in  signal-to-noise ra t io  
may be realized. However, the detector t ime-constant generally inc reases  

The PbS and PbSe thin-fi lm detectors  

f 

2R. C. Jones, "Information Capacity of a Beam of Light", J. Opt. S O C .  
Am. 52, 493-501 (May 1962). See a l so  Section No. 4 of the in te r im 

p rogres s  repor t  on Contract No. NAS 9-879, 7 November 1962 through 
7 January 
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in such circumstances due to the reduction in the number of c a r r i e r s  in 
the semi-conducting detector mater ia l .  
than tenfold improvement may be obtained, and indeed i f  such improve- 
ment  may be obtained at all for very  tiny de tec tors  because of their  sma l l e r  
initial noise power. 

Moreover ,  it is not known i f  m o r e  

Because of the very narrow optical bandwidth required for this 
sys tem,  it i s  expected that ambient radiation can be made negligibly small. 
Therefore ,  the exact level of performance to be expected remains  uncertain.  
Detector performance is generally stated4 in t e r m s  of power detectivity, D:k, 
ei ther for  thermal  radiation of a specified tempera ture ,  usually 500°K, o r  
spectral ly  pure radiation; the peak value of the D:k( A) curve i s  often cited. 

where 
2 

A = a r e a  of detector ,  c m  

D f  = eiectr ical  noise bandwidth, cps 

NEP = noise-equivalent radiation power 

If we assume a detector a r e a  of 0. 001  cm2  and l imit  of a tenfold 
improvement in D::c, we obtain 

3 1 0 - ~ ( ~ f ) ~ / ~  
NEP D:I: 

Fur thermore  one may naively a s sume  that no change occurs  in the 
detector time constant, and hence establish a minimum detectable energy 
for a detector by considering use  of pulses appropriate to the published 
detector time constants. 
computed: 

A noise-equivalent number of photons may then be 

where D4 is given in c m  cps 112w-1, T in psec ,  and A in p. 

A few values of this parameter  for some of the best  detectors  a r e  5 presented in Table I. 
The response is approximately the same for  wavelengths shor te r  than those 
given. Therefore the resu l t s  may be summar ized  a s  follows: Infrared 

The data were  taken f r o m  a recent  survey ar t ic le  . 

5 W. Haynie, C. Gramm,  and A. P r a s i l ,  "Semi-Annual Report  on a Space 
Background Study", Contract DA-30-069-ORD-2803, Eas tman Kodak Co. , 
Apparatus and Optical Division, Rochester ,  N. Y. (Jan. 16, 1961). 

Advances in  Electronics ,  Academic P r e s s  Inc., New York (1953). 

nautics Magazine, November 196 1. 

4R. C. Jones, I 'Performance of Detectors f o r  Visible and Infrared Radiation", 

5W. L. Wolfe and T. Limper is ,  "Quantum Point Detectors",  SpaceIAero-  
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detectors  operated in an ideal manner may be character ized by a noise- 
equivalent number of photons received in each period of time equal in 
duration to the detector t ime constant. 
is lo3 ,  and for wavelengths up to 3 6 ~  it is lo4. 

For  wavelengths up to  51-1 this N E Q  

It should be noted that this noise is much more  important than signal 
noise because it may cause a false indication when n pulse has been sent. 
It is equivalent to ambient radiation values of A = 10 8 and 108 in Jones '  
analysis 2 . Moreover, sys tem operation will be even l e s s  efficient i f  pulse 
width is not matched to detector time constant; this  could be an  awkward 
res t r ic t ion  except for  the fact  that none of the t ime constants are unduly 
short. 

It must  be emphasized that the NEQ analysis presented he re  is quite 
a rb i t r a ry ,  but hopefully suited to the sys t em requirements.  The choice of 
detector s ize  and permissible  improvement factor was imply a matter of 
estimation; a smal le r  detector could be utilized but then less  improvement 
(perhaps none) f rom reduction of radiation could be antikipated. 

Sensitive 
Mater ia l  

InSb 

Ge : 2 hI 

PbS 

PbSe 

P-type 
Ge :Au 

Table I. NEQ of IR Detectors 

Wavelength Time Constant Peak Detectivity NEQ 
I D w -  1) Photons (microns)  

2 10 

10 

( p set) (cm cps 

5.0 a 6 x  10 

36 (0. 1 1 x 10 

8 x  10 

1.1 x 10 4 

3 

3 

2.0 150 i o i i  2.4 x 10 

4.3 x 10 10 4.5 18 4.4 x 10 

10 1 x 10 3 5 (0. 1 1.5 x 10 

6 
A somewhat s imi la r  treatment has  been given by Jones; the foregoing 

may se rve  to make his comprehensive analysis m o r e  meaningful for our 
application. 
and Genoud presents  the theory of signal-noise and background-noise limitations 
in a c lear ,  consistent manner,  although the par t icular  data of in te res t  still 
a r e  not available. 

A good general  discussion7 of infrared detectors by Gelinas 

6R. C. , "Information Capacity of Radiation Detectors II", J. Opt. SOC. 

7R. W. Gelinas and R. H. Genoud, "A Broad Look at the Performance of 

Am. 52, 1193-1200 (Nov. 1962). 

Infrared Detectors", RAND Corporation, P- 1697, (May 11, 1959). 
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One detector which has received much publicity is the silicon 
photodiode or phototransister . These detectors  suffer f rom junction 
capacitance and Johnson-Nyquist noise in such a manner that high frequency 
response is only obtainable a t  the expense of weak-signal detectability. 
Recent measurements8 and calculations indicate a low-signal NEQ of 
5 x 104 for a t ime constant of 100 p sec ,  and hence they a r e  much inferior 
to S 1 photosurfaces . 

It should be remembered  that it i s  theoretically possible to obtain 
performance as predicted by the high quantum efficiency WO. 5) of infrared 
detectors  only if  noise sources  can be eliminated. 
t empera ture  amplifier is probably needed, and elimination of noise 
sources  in the detectors  themselves  is sure ly  not complete even without 
ambient r a d i a t i a .  
for  making an inter im appraisal  of the  effectiveness of infrared wave- 
lengths f o r  communication; if an infrared sys t em seems  to be at all 
a t t ract ive,  a detector study program should be undertaken to  evaluate 
the best  detectors in the mode of operation appropriate  to  the sys tem 
being considered. 

Some type of low- 

The foregoing estimation therefore  provides a means 

R .  K .  Schisler,  unpublished d a t a  (Hughes Aircraf t  Company) 8 
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APPENDIX A 

LASER BIBLIOGRAPHY 

In an a r e a  of technology which is as rapidly moving as the Lase r  

field, no bibliography can claim to be complete. In fact, it is likely to 

become obsolete during its preparation. 

-1- 
L I L ~  in te res t  which has been stimulated in these devices has resul ted 

in an enormous number of lay as well as t ruly professional a r t ic les  ranging 

f r o m  pure theoretical  speculation to systems applications. 

be inclusive would have been sheer  folly. Since most  of the lay a r t i c l e s  add 

no new mater ia l  to the’body of scientific knowledge, but have the purpose of 

instructing the uninitiated rather  than informing the expert ,  these a r e  not 

represented here. 

p rocess  of the preparation of this l ist ,  but no attempt was made to t ruly 

formalize the ru les  for acceptance o r  rejection of a given ar t ic le .  

t ime did not permi t  the annotation of this l is t ,  but it is hoped that this can 

be done at least  for the more  important papers  at a la ter  date. 

To attempt to 

Some degree of selectivity has  been natural  in the 

Moreover,  

Recently a number of surveys have been published and as a r e su l t  

it is  possible to suggest a rather  smal l  number of journals and a book which 

will s e rve  as handy reference sources  for both the expert  and the laymen. 
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These a r e  the follow’ing: 

LASERS - Generation of Light by Stimulated Emiss ion  - Bela A. Lengyel, 

John Wiley and Sons, Inc. , N. Y. , 1962. 

Written by Dr. B. A. Lengyel Qf the Hughes Research  Laborator ies  

at Malibu, this book i s  the first to offer a unified exposition of the 

principles of l a s e r s  and recent  p rogres s  in the field. 

level and with such clar i ty  a s  to make it readily understandable to the 

It is writ ten at a 

interested layman ;as  well a s  the professional. 

APPLIED OPTICS - Supplement No. 1 - Optical Mase r s  - 1962 

Published by the Optical Society of America,  this journal contains 

survey ar t ic les  by internationally known special is ts  in the field. 

PROC IEEE - Quantum Electronics  Issue,  January 1963 

Published by the IEEE, this i s sue  contains survey a r t i c l e s  on 

proper t ies  and applications of the device. Together with the jqurnal above, 

mos t  of the now-classic papers  on special  topics in the field are represented.  
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